Import Package
import guan
Module – basic_functions
# 测试
guan.test()
# 泡利矩阵
sigma_0 = guan.sigma_0()
sigma_x = guan.sigma_x()
sigma_y = guan.sigma_y()
sigma_z = guan.sigma_z()
# 泡利矩阵的张量积
sigma_00 = guan.sigma_00()
sigma_0x = guan.sigma_0x()
sigma_0y = guan.sigma_0y()
sigma_0z = guan.sigma_0z()
sigma_x0 = guan.sigma_x0()
sigma_xx = guan.sigma_xx()
sigma_xy = guan.sigma_xy()
sigma_xz = guan.sigma_xz()
sigma_y0 = guan.sigma_y0()
sigma_yx = guan.sigma_yx()
sigma_yy = guan.sigma_yy()
sigma_yz = guan.sigma_yz()
sigma_z0 = guan.sigma_z0()
sigma_zx = guan.sigma_zx()
sigma_zy = guan.sigma_zy()
sigma_zz = guan.sigma_zz()
Module – Fourier_transform
# 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值)
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell, hopping)
# 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值)
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2)
# 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值)
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3)
# 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数)
hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell, hopping)
# 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数)
hamiltonian_function = guan.two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2)
# 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数)
hamiltonian_function = guan.three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3)
# 由实空间格矢得到倒空间格矢(一维)
b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector(a1)
# 由实空间格矢得到倒空间格矢(二维)
b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2)
# 由实空间格矢得到倒空间格矢(三维)
b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3)
# 由实空间格矢得到倒空间格矢(一维),这里为符号运算
b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1)
# 由实空间格矢得到倒空间格矢(二维),这里为符号运算
b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2)
# 由实空间格矢得到倒空间格矢(三维),这里为符号运算
b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3)
Module – Hamiltonian_of_examples
# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
hamiltonian = guan.hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0)
# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0)
# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0)
# 构建有限尺寸的SSH模型哈密顿量
hamiltonian = guan.hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1)
# 获取Zigzag边的石墨烯条带的元胞间跃迁
hopping = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0)
# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0)
# 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数)
h00, h01 = guan.get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0)
# 获取BHZ模型的在位能和跃迁项
H0, H1, H2 = guan.get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1)
# 获取半个BHZ模型的在位能和跃迁项(自旋向上)
H0, H1, H2 = guan.get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1)
# 获取半个BHZ模型的在位能和跃迁项(自旋向下)
H0, H1, H2 = guan.get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1)
# 一维链的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_simple_chain(k)
# 二维方格子的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_square_lattice(k1, k2)
# 准一维方格子条带的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0)
# 三维立方格子的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_cubic_lattice(k1, k2, k3)
# SSH模型的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_ssh_model(k, v=0.6, w=1)
# 石墨烯的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default')
# 石墨烯有效模型的哈密顿量(倒空间)
hamiltonian = guan.effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0)
# 石墨烯有效模型离散化后的哈密顿量(倒空间)
hamiltonian = guan.effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0)
# 准一维Zigzag边石墨烯条带的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0)
# Haldane模型的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default')
# 准一维Haldane模型条带的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0)
# 一个量子反常霍尔效应的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1)
# BHZ模型的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01)
# 半BHZ模型的哈密顿量(自旋向上)(倒空间)
hamiltonian = guan.hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01)
# 半BHZ模型的哈密顿量(自旋向下)(倒空间)
hamiltonian = guan.hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01)
# BBH模型的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1)
# Kagome模型的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_kagome_lattice(kx, ky, t=1)
# 超蜂窝晶格的哈密顿量(倒空间)
hamiltonian = guan.hamiltonian_of_hyperhoneycomb_lattice(kx, ky, kz, t=1, a=1)
Module – band_structures_and_wave_functions
# 计算哈密顿量的本征值
eigenvalue = guan.calculate_eigenvalue(hamiltonian)
# 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0)
# 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组
eigenvalue_array = guan.calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0)
# 计算哈密顿量的本征矢
eigenvector = guan.calculate_eigenvector(hamiltonian)
# 通过二分查找的方法获取和相邻波函数一样规范的波函数
vector_target = guan.find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6)
# 通过乘一个相反的相位角,实现波函数的一个非零分量为实数,从而得到固定规范的波函数
vector = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector, index=None)
# 通过乘一个相反的相位角,实现波函数的一个非零分量为实数,从而得到固定规范的波函数(在一组波函数中选取最大的那个分量)
vector_array = guan.find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array)
# 循环查找规范使得波函数的一个非零分量为实数,得到固定规范的波函数
vector = guan.loop_find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None)
# 循环查找规范使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量)
vector_array = guan.loop_find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005)
# 旋转两个简并的波函数(说明:参数比较多,算法效率不高)
vector1, vector2 = guan.rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0)
# 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高)
vector1_array, vector2_array = guan.rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0)
# 在一组数据中找到数值相近的数
new_array = guan.find_close_values_in_one_array(array, precision=1e-2)
# 寻找能带的简并点
degenerate_k_array, degenerate_eigenvalue_array = guan.find_degenerate_points(k_array, eigenvalue_array, precision=1e-2)
Module – Green_functions
# 输入哈密顿量,得到格林函数
green = guan.green_function(fermi_energy, hamiltonian, broadening, self_energy=0)
# 在Dyson方程中的一个中间格林函数G_{nn}^{n}
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0)
# 在Dyson方程中的一个中间格林函数G_{in}^{n}
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
# 在Dyson方程中的一个中间格林函数G_{ni}^{n}
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
# 在Dyson方程中的一个中间格林函数G_{ii}^{n}
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
# 计算转移矩阵(该矩阵可以用来计算表面格林函数)
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
# 计算电极的表面格林函数
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
# 计算电极的自能(基于Dyson方程的小矩阵形式)
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
# 计算电极的自能(基于中心区整体的大矩阵形式)
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
# 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算)
self_energy, gamma = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center)
# 计算考虑电极自能后的中心区的格林函数
green, gamma_right, gamma_left = guan.green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian)
# 计算用于计算局域电流的格林函数G_n
G_n = guan.electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian)
Module – density_of_states
# 计算体系的总态密度
total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01)
# 对于不同费米能,计算体系的总态密度
total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0)
# 计算方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*internal_degree)
local_dos = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01)
# 计算立方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*N3*internal_degree)
local_dos = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01)
# 使用Dyson方程,计算方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree)
local_dos = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01)
# 使用Dyson方程,计算方格子的局域态密度,方法二(其中,h00的维度为:dim_h00 = N2*internal_degree)
local_dos = guan.local_density_of_states_for_square_lattice_using_dyson_equation_with_second_method(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01)
# 使用Dyson方程,计算立方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*N3*internal_degree)
local_dos = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01)
# 使用Dyson方程,计算方格子条带(考虑了电极自能)的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree)
local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01)
Module – quantum_transport
# 计算电导
conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100)
# 计算不同费米能下的电导
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0)
# 计算在势垒散射下的电导
conductance = guan.calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1)
# 计算在无序散射下的电导
conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1)
# 计算在无序散射下的电导(需要输入无序数组)
conductance = guan.calculate_conductance_with_disorder_array(fermi_energy, h00, h01, disorder_array, length=100)
# 计算在无序垂直切片的散射下的电导
conductance = guan.calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
# 计算在无序水平切片的散射下的电导
conductance = guan.calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
# 计算在随机空位的散射下的电导
conductance = guan.calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100)
# 计算在不同无序散射强度下的电导
conductance_array = guan.calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0)
# 计算在不同无序浓度下的电导
conductance_array = guan.calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0)
# 计算在不同无序散射长度下的电导
conductance_array = guan.calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0)
# 计算得到Gamma矩阵和格林函数,用于计算六端口的量子输运
gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10)
# 计算六端口的透射矩阵
transmission_matrix = guan.calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10)
# 计算从电极1出发的透射系数
transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 = guan.calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10)
# 通过动量k的虚部,判断通道为传播通道还是衰减通道
if_active = guan.if_active_channel(k_of_channel)
# 获取通道的动量和速度,用于计算散射矩阵
k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01)
# 获取分类后的动量和速度,以及U和F,用于计算散射矩阵
k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
# 计算散射矩阵
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=100)
# 从散射矩阵中,获取散射矩阵的信息
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
# 已知h00和h01,计算散射矩阵并获得散射矩阵的信息
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100)
# 从散射矩阵中打印出散射矩阵的信息
guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt')
# 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息
guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt')
# 在无序下,计算散射矩阵
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0)
# 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息
transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged = guan.calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1)
Module – topological_invariant
# 通过高效法计算方格子的陈数
chern_number = guan.calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0)
# 通过高效法计算方格子的陈数(可计算简并的情况)
chern_number = guan.calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0)
# 通过Wilson loop方法计算方格子的陈数
chern_number = guan.calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
# 通过Wilson loop方法计算方格子的陈数(可计算简并的情况)
chern_number = guan.calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
# 通过高效法计算贝利曲率
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0)
# 通过高效法计算贝利曲率(可计算简并的情况)
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0)
# 通过Wilson loop方法计算贝里曲率
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
# 通过Wilson loop方法计算贝里曲率(可计算简并的情况)
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
# 计算蜂窝格子的陈数(高效法)
chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0)
# 计算Wilson loop
wilson_loop_array = guan.calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0)
Module – machine_learning
# 全连接神经网络模型(包含一个隐藏层)(模型的类定义成全局的)
model = guan.fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_size=10, output_size=1, activation='relu')
# 全连接神经网络模型(包含两个隐藏层)(模型的类定义成全局的)
model = guan.fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_size_1=10, hidden_size_2=10, output_size=1, activation_1='relu', activation_2='relu')
# 全连接神经网络模型(包含三个隐藏层)(模型的类定义成全局的)
model = guan.fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden_size_1=10, hidden_size_2=10, hidden_size_3=10, output_size=1, activation_1='relu', activation_2='relu', activation_3='relu')
# 卷积神经网络模型(包含两个卷积层和两个全连接层)(模型的类定义成全局的)
model = guan.convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=10, out_channels_2=10, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=0, padding_2=0, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=1, hidden_size_1=10, hidden_size_2=10, output_size=1)
# 从损失函数的变化情况中获取是否停止训练的信号
break_signal = guan.get_break_signal_from_loss_array(loss_array, patience=100, min_delta=0.001)
# 使用优化器训练模型
model, loss_array = guan.train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1, early_stop=0, patience=100, min_delta=0.001):
# 使用优化器批量训练模型
model, loss_array = guan.batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1, more_loss_data=0, early_stop=0, patience=100, min_delta=0.001)
# 保存模型参数到文件
guan.save_model_parameters(model, filename='./model_parameters.pth')
# 保存完整模型到文件(保存时需要模型的类可访问)
guan.save_model(model, filename='./model.pth')
# 使用TorchScript形式保存模型到文件(TorchScript允许模型在不依赖Python解释器的情况下运行,适合在生产环境中部署)
guan.save_model_with_torch_jit_script(model, filename='model_scripted_with_torch_jit.pth')
# 以字典的形式保存模型的所有信息到文件(保存时需要模型的类可访问,此外还要输入模型的实例化函数。需要注意的是:该方法要求类和实例化函数都是独立可直接运行的模块)
guan.save_model_with_all_information(model, model_class, model_instantiation, note='', filename='./model_with_all_information.pth')
# 加载模型参数(需要输入模型,加载后,原输入的模型参数也会改变)
model = guan.load_model_parameters(model, filename='./model_parameters.pth')
# 加载完整模型(不需要输入模型,但加载时需要原定义的模型的类可访问)
model = guan.load_model(filename='./model.pth')
# 加载TorchScript形式的模型
scripted_model = guan.load_model_with_torch_jit_script(filename='model_scripted_with_torch_jit.pth')
# 加载包含所有信息的模型(包含了模型的类和实例化函数等,返回的是模型对象。需要注意的是:该方法要求类和实例化函数都是独立可直接运行的模块)
model = guan.load_model_with_all_information(filename='./model_with_all_information.pth', note_print=0)
# 加载训练数据,用于批量加载训练
train_loader = guan.load_train_data(x_train, y_train, batch_size=32)
# 从pickle文件(多个小文件)中读取输入数据和输出数据,用于训练或预测
input_data, output_data = guan.load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, 2, 3], directory='./', input_filename='input_index=', output_filename='output_index=', type=None)
# 从pickle文件(一个数组文件)中读取输入数据和输出数据,用于训练或预测
input_data, output_data = guan.load_input_data_and_output_data_as_torch_tensors_with_pickle_from_array_file(input_filename='input_file', output_filename='output_file', type=None)
# 数据的主成分分析PCA
data_transformed, explained_variance_ratio = guan.pca_of_data(data, n_components=None, standard=1)
Module – file_reading_and_writing
# 使用pickle将变量保存到文件(支持几乎所有对象类型)
guan.dump_data(data, filename, file_format='.txt')
# 使用pickle从文件中恢复数据到变量(支持几乎所有对象类型)
data = guan.load_data(filename, file_format='.txt')
# 使用NumPy保存数组变量到npy文件(二进制文件)
guan.save_npy_data(data, filename)
# 使用NumPy从npy文件恢复数据到数组变量(二进制文件)
guan.load_npy_data(filename)
# 使用NumPy保存数组变量到TXT文件(文本文件)
guan.save_txt_data(data, filename)
# 使用NumPy从TXT文件恢复数据到数组变量(文本文件)
guan.load_txt_data(filename)
# 如果不存在文件夹,则新建文件夹
guan.make_directory(directory='./test')
# 如果不存在文件,则新建空文件
guan.make_file(file_path='./a.txt')
# 打开文件用于写入,默认为新增内容
f = guan.open_file(filename='a', file_format='.txt', mode='add')
# 打印到TXT文件
guan.print_to_file(*args, filename='print_result', file_format='.txt', print_on=True)
# 读取文本文件内容。如果文件不存在,返回空字符串
content = guan.read_text_file(file_path='./a.txt', make_file=None)
# 获取目录中的所有文件名
file_list = guan.get_all_filenames_in_directory(directory='./', file_format=None, show_root_path=0, sort=1, include_subdirectory=1)
# 获取文件夹中某种文本类型的文件以及读取所有内容
file_list, content_array = guan.read_text_files_in_directory(directory='./', file_format='.md')
# 在多个文本文件中查找关键词
file_list_with_words = guan.find_words_in_multiple_files(words, directory='./', file_format='.md')
# 复制一份文件
guan.copy_file(old_file='./a.txt', new_file='./b.txt')
# 打开文件,替代某字符串
guan.open_file_and_replace_str(file_path='./a.txt', old_str='', new_str='')
# 复制一份文件,然后再替代某字符串
guan.copy_file_and_replace_str(old_file='./a.txt', new_file='./b.txt', old_str='', new_str='')
# 拼接两个PDF文件
guan.combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf')
# 读取文件中的一维数据(一行一组x和y)
x_array, y_array = guan.read_one_dimensional_data(filename='a', file_format='.txt')
# 读取文件中的一维数据(一行一组x和y)(支持复数形式)
x_array, y_array = guan.read_one_dimensional_complex_data(filename='a', file_format='txt')
# 读取文件中的XYZ数据(一行一组x, y, z)
x_array, y_array, z_array = guan.read_xyz_data(filename='a', file_format='.txt')
# 读取文件中的二维数据(第一行和第一列分别为横纵坐标)
x_array, y_array, matrix = guan.read_two_dimensional_data(filename='a', file_format='.txt')
# 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式)
x_array, y_array, matrix = guan.read_two_dimensional_complex_data(filename='a', file_format='.txt')
# 读取文件中的二维数据(不包括横纵坐标)
matrix = guan.read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt')
# 在文件中写入一维数据(一行一组x和y)
guan.write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt')
# 在文件中写入一维数据(一行一组x和y)(需要输入已打开的文件)
guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f)
# 在文件中写入XYZ数据(一行一组x, y, z)
guan.write_xyz_data(x_array, y_array, z_array, filename='a', file_format='.txt')
# 在文件中写入XYZ数据(一行一组x, y, z)(需要输入已打开的文件)
guan.write_xyz_data_without_opening_file(x_array, y_array, z_array, f)
# 在文件中写入二维数据(第一行和第一列分别为横纵坐标)
guan.write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt')
# 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件)
guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
# 在文件中写入二维数据(不包括横纵坐标)
guan.write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt')
# 在文件中写入二维数据(不包括横纵坐标)(需要输入已打开的文件)
guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f)
# 改变当前的目录位置
guan.change_directory_by_replacement(current_key_word='code', new_key_word='data')
Module – figure_plotting
# 导入plt, fig, ax
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20, fontfamily='Times New Roman')
# 基于plt, fig, ax画图
guan.plot_without_starting_fig_ax(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None, fontfamily='Times New Roman')
# 画图
guan.plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2, fontfamily='Times New Roman')
# 一组横坐标数据,两组纵坐标数据画图
guan.plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2, fontfamily='Times New Roman')
# 两组横坐标数据,两组纵坐标数据画图
guan.plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2, fontfamily='Times New Roman')
# 一组横坐标数据,三组纵坐标数据画图
guan.plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2, fontfamily='Times New Roman')
# 三组横坐标数据,三组纵坐标数据画图
guan.plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None, markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2, fontfamily='Times New Roman')
# 画三维图
guan.plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100, fontfamily='Times New Roman')
# 画Contour图
guan.plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300, fontfamily='Times New Roman')
# 画棋盘图/伪彩色图
guan.plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300, fontfamily='Times New Roman')
# 基于plt, fig, ax,通过坐标画点和线
guan.draw_dots_and_lines_without_starting_fig_ax(plt, fig, ax, coordinate_array, draw_dots=1, draw_lines=1, max_distance=1, line_style='-k', linewidth=1, dot_style='ro', markersize=3)
# 通过坐标画点和线
guan.draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300)
# 合并两个图片
guan.combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300)
# 合并三个图片
guan.combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300)
# 合并四个图片
guan.combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300)
# 对某个目录中的txt文件批量读取和画图
guan.batch_reading_and_plotting(directory, xlabel='x', ylabel='y')
# 将图片制作GIF动画
guan.make_gif(image_path_array, filename='a', duration=0.1)
# 选取Matplotlib颜色
color_array = guan.color_matplotlib()
Module – data_processing
# 模型对话
response = guan.chat(prompt='你好', model=1, stream=0, top_p=0.8, temperature=0.85)
# 从列表中删除某个匹配的元素
new_array = guan.remove_item_in_one_array(array, item)
# 并行计算前的预处理,把参数分成多份
parameter_array = guan.preprocess_for_parallel_calculations(parameter_array_all, task_num=1, task_index=0)
# 创建一个sh文件用于提交任务(PBS)
guan.make_sh_file_for_qsub(sh_filename='a', command_line='python a.py', cpu_num=1, task_name='task', cd_dir=0)
# 创建一个sh文件用于提交任务(LSF)
guan.make_sh_file_for_bsub(sh_filename='a', command_line='python a.py', cpu_num=1, task_name='task', queue_name='score', cd_dir=0)
# 复制.py和.sh文件,然后提交任务,实现半手动并行(PBS)
guan.copy_py_sh_file_and_qsub_task(parameter_array, py_filename='a', old_str_in_py='parameter=0', new_str_in_py='parameter=', sh_filename='a', qsub_task_name='task')
# 复制.py和.sh文件,然后提交任务,实现半手动并行(LSF)
guan.copy_py_sh_file_and_bsub_task(parameter_array, py_filename='a', old_str_in_py='parameter=0', new_str_in_py='parameter=', sh_filename='a', bsub_task_name='task')
# 自动先后运行程序
guan.run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0)
# 将XYZ数据转成矩阵数据(说明:x_array/y_array的输入和输出不一样。要求z_array数据中y对应的数据为小循环,x对应的数据为大循环)
x_array, y_array, matrix = guan.convert_xyz_data_into_matrix_data(x_array, y_array, z_array)
# 将矩阵数据转成XYZ数据(说明:x_array/y_array的输入和输出不一样。生成的z_array数据中y对应的数据为小循环,x对应的数据为大循环)
x_array, y_array, z_array = guan.convert_matrix_data_into_xyz_data(x_array, y_array, matrix)
# 通过定义计算R^2(基于实际值和预测值,数值有可能小于0)
R2 = guan.calculate_R2_with_definition(y_true_array, y_pred_array)
# 通过sklearn计算R^2,和上面定义的计算结果一致
R2 = guan.calculate_R2_with_sklearn(y_true_array, y_pred_array)
# 通过scipy计算线性回归后的R^2(基于线性回归模型,范围在0和1之间)
R2 = guan.calculate_R2_after_linear_regression_with_scipy(y_true_array, y_pred_array)
# 判断一个数是否接近于整数
result = guan.close_to_integer(value, abs_tol=1e-3)
# 根据子数组的第index个元素对子数组进行排序(index从0开始)
sorted_array = guan.sort_array_by_index_element(original_array, index)
# 随机获得一个整数,左闭右闭
rand_number = guan.get_random_number(start=0, end=1)
# 选取一个种子生成固定的随机整数,左闭右开
rand_num = guan.generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10)
# 获取两个模式之间的字符串
string = guan.get_string_between_two_patterns(original_string, start, end, include_start_and_end=0)
# 以显示编号的样式,打印数组
guan.print_array_with_index(array, show_index=1, index_type=0)
# 使用jieba软件包进行分词
words = guan.divide_text_into_words(text)
# 根据一定的字符长度来分割文本
split_text_list = guan.split_text(text, wrap_width=3000)
# 判断某个字符是中文还是英文或其他
word_type = guan.check_Chinese_or_English(a)
# 统计中英文文本的字数,默认不包括空格
num_words = guan.count_words(text, include_space=0, show_words=0)
# 获取函数或类的源码(返回字符串)
source = guan.get_source(name)
# 将RGB转成HEX
hex = guan.rgb_to_hex(rgb, pound=1)
# 将HEX转成RGB
rgb = guan.hex_to_rgb(hex)
# 使用MD5进行散列加密
hashed_password = guan.encryption_MD5(password, salt='')
# 使用SHA-256进行散列加密(常用且相对比较安全)
hashed_password = guan.encryption_SHA_256(password, salt='')
# 使用bcrypt生成盐并加密(常用且更加安全)
hashed_password = guan.encryption_bcrypt(password)
# 验证bcrypt加密的密码(这里的hashed_password已经包含了生成时使用的盐,bcrypt.checkpw会自动从hashed_password中提取盐,因此在验证时无需再单独传递盐)
Boolean_value = guan.check_bcrypt_hashed_password(password_input, hashed_password)
# 获取当前日期字符串
datetime_date = guan.get_date(bar=True)
# 获取当前时间字符串
datetime_time = guan.get_time(colon=True)
# 获取运行的日期和时间并写入文件
guan.statistics_with_day_and_time(content='', filename='a', file_format='.txt')
# 获取本月的所有日期
date_array = guan.get_date_array_of_the_current_month(str_or_datetime='str')
# 获取上个月份
year_of_last_month, last_month = guan.get_last_month()
# 获取上上个月份
year_of_the_month_before_last, the_month_before_last = guan.get_the_month_before_last()
# 获取上个月的所有日期
date_array = guan.get_date_array_of_the_last_month(str_or_datetime='str')
# 获取上上个月的所有日期
date_array = guan.get_date_array_of_the_month_before_last(str_or_datetime='str')
# 根据新的日期,填充数组中缺少的数据为零
new_data_array = guan.fill_zero_data_for_new_dates(old_dates, new_dates, old_data_array)
# 获取内存信息
total_memory, used_memory, available_memory, used_memory_percent = guan.get_memory_info()
# 获取CPU使用率
cpu_usage = guan.get_cpu_usage(interval=1)
# 获取每个CPU核心的使用率,返回列表
cpu_usage_array_per_core = guan.get_cpu_usage_array_per_core(interval=1)
# 获取使用率最高的CPU核心的使用率
max_cpu_usage = guan.get_cpu_max_usage_for_all_cores(interval=1)
# 获取非零使用率的CPU核心的平均使用率
averaged_cpu_usage = guan.get_cpu_averaged_usage_for_non_zero_cores(interval=1)
# 在一定数量周期内得到CPU的使用率信息。默认为10秒钟收集一次,(interval+sleep_interval)*times 为收集的时间范围,范围默认为60秒,即1分钟后返回列表,总共得到6组数据。其中,数字第一列和第二列分别是平均值和最大值。
cpu_information_array = guan.get_cpu_information_for_times(interval=1, sleep_interval=9, times=6)
# 将得到的CPU的使用率信息写入文件。默认为半分钟收集一次,(interval+sleep_interval)*times 为收集的时间范围,范围默认为60分钟,即1小时写入文件一次,总共得到120组数据。其中,数字第一列和第二列分别是平均值和最大值。
guan.write_cpu_information_to_file(filename='./cpu_usage', interval=1, sleep_interval=29, times=120)
# 画CPU的使用率图。默认为画最近的120个数据,以及不画CPU核心的最大使用率。
guan.plot_cpu_information(filename='./cpu_usage', recent_num=120, max_cpu=0)
# 画详细的CPU的使用率图,分CPU核心画图。
guan.plot_detailed_cpu_information(filename='./cpu_usage', recent_num=120)
# 获取MAC地址
mac_address = guan.get_mac_address()
# 获取软件包中的所有模块名
module_names = guan.get_all_modules_in_one_package(package_name='guan')
# 获取软件包中一个模块的所有函数名
function_names = guan.get_all_functions_in_one_module(module_name, package_name='guan')
# 获取软件包中的所有函数名
all_function_names = guan.get_all_functions_in_one_package(package_name='guan', print_show=1)
# 获取调用本函数的函数名
calling_function_name = guan.get_calling_function_name(layer=1)
# 统计Python文件中import的数量并排序
import_statement_counter = guan.count_number_of_import_statements(filename, file_format='.py', num=1000)
# 查找文件名相同的文件
repeated_file = guan.find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000)
# 统计各个子文件夹中的文件数量
sub_directory, num_in_sub_directory = guan.count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, smaller_than_num=None)
# 在多个子文件夹中产生必要的文件,例如 readme.md
guan.creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[])
# 删除特定文件名的文件(谨慎使用)
guan.delete_file_with_specific_name(directory, filename='readme', file_format='.md')
# 将所有文件移到根目录(谨慎使用)
guan.move_all_files_to_root_directory(directory)
Module – others
# 获取软件包的本机版本
current_version = guan.get_current_version(package_name='guan')
# 获取Python软件包的最新版本
latest_version = guan.get_latest_version(package_name='guan', timeout=5)
# 获取包含某个字符的进程PID值
id_running_array = guan.get_PID_array(name)
# 每日git commit次数的统计
date_array, commit_count_array = guan.statistics_of_git_commits(print_show=0, str_or_datetime='str')
# 将文件目录结构写入Markdown文件
guan.write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None)
# 从网页的标签中获取内容
content = guan.get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a'])
# 从HTML中获取所有的链接
link_array = guan.get_links_from_html(html_link, links_with_text=0)
# 检查链接的有效性
Boolean_value = guan.check_link(url, timeout=3, allow_redirects=True)
# 检查链接数组中链接的有效性
failed_link_array = guan.check_link_array(link_array, timeout=3, allow_redirects=True, try_again=0, print_show=1)
# 生成二维码
guan.creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png')
# 将PDF文件转成文本
content = guan.pdf_to_text(pdf_path)
# 获取PDF文件页数
num_pages = guan.get_pdf_page_number(pdf_path)
# 获取PDF文件指定页面的内容
page_text = guan.pdf_to_txt_for_a_specific_page(pdf_path, page_num=1)
# 获取PDF文献中的链接。例如: link_starting_form='https://doi.org'
links = guan.get_links_from_pdf(pdf_path, link_starting_form='')
# 通过Sci-Hub网站下载文献
guan.download_with_scihub(address=None, num=1)
# 将字符串转成音频
guan.str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0)
# 将txt文件转成音频
guan.txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0)
# 将PDF文件转成音频
guan.pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0)
# 将wav音频文件压缩成MP3音频文件
guan.compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k')
# 将WordPress导出的XML格式文件转换成多个MarkDown格式的文件
guan.convert_wordpress_xml_to_markdown(xml_file='./a.xml', convert_content=1, replace_more=[])
# 获取所有股票
title, stock_data = guan.all_stocks()
# 获取所有股票的代码
stock_symbols = guan.all_stock_symbols()
# 股票代码的分类
stock_symbols_60, stock_symbols_00, stock_symbols_30, stock_symbols_68, stock_symbols_8_4, stock_symbols_others = guan.stock_symbols_classification()
# 股票代码各个分类的数量
num_stocks_60, num_stocks_00, num_stocks_30, num_stocks_68, num_stocks_8_4, num_stocks_others = guan.statistics_of_stock_symbols_classification()
# 从股票代码获取股票名称
stock_name = guan.find_stock_name_from_symbol(symbol='000002')
# 市值排序
sorted_array = guan.sorted_market_capitalization(num=10)
# 美股市值排序
sorted_array = guan.sorted_market_capitalization_us(num=10)
# 获取单个股票的历史数据
title, stock_data = guan.history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101')
# 绘制股票图
guan.plot_stock_line(date_array, opening_array, closing_array, high_array, low_array, lw_open_close=6, lw_high_low=2, xlabel='date', ylabel='price', title='', fontsize=20, labelsize=20, adjust_bottom=0.2, adjust_left=0.2, fontfamily='Times New Roman')
# Guan软件包的使用统计(仅仅统计装机数和import次数)
guan.statistics_of_guan_package(function_name=None)
Module – decorators
# 函数的装饰器,用于获取计算时间(秒)
@guan.timer_decorator
# 函数的装饰器,用于获取计算时间(分)
@guan.timer_decorator_minutes
# 函数的装饰器,用于获取计算时间(时)
@guan.timer_decorator_hours
# 函数的装饰器,用于获取计算时间(秒,分,时),可将运行的时间写入文件
@guan.timer_decorator_with_parameters(unit='second', print_show=1, write_file=0, filename='timer')